蜜臀av性久久久久|国产免费久久精品99|国产99久久久久久免费|成人精品一区二区三区在线|日韩精品一区二区av在线|国产亚洲欧美在线观看四区|色噜噜综合亚洲av中文无码|99久久久国产精品免费播放器

Scientists develop predictive model of hydrogen-nanovoid interaction

Source: Xinhua| 2019-07-17 18:19:22|Editor: mingmei
Video PlayerClose

HEFEI, July 17 (Xinhua) -- Chinese and Canadian scientists have developed a predictive model for hydrogen trapping and bubbling in nanovoids, which is crucial to the understanding of hydrogen-induced damage in structural materials.

Hydrogen, the most abundant element in existence, is a highly anticipated fuel for fusion reactions and thus an important focus of study. However, it can easily penetrate metal surfaces through the gaps between metal atoms and causes damage.

"The interplay between hydrogen and nanovoids has long been recognized as a key factor in hydrogen-induced damage in structural materials, yet it remains poorly understood," said Wu Xuebang, a researcher from the Institute of Solid State Physics, Chinese Academy of Sciences.

Based on fundamental quantum mechanics, the research team proposed using computer simulations to tackle the problem. After five years of efforts, the researchers, in cooperation with a Canadian team, have established a predictive model for quantitative determination of the configurations and energetics of hydrogen adatoms in nanovoids.

Hou Jie, the first author of the research paper, said that their model offers mechanistic insights for evaluating hydrogen-induced damage in nuclear fusion reactors, thus paving the way for harvesting fusion energy in the future.

The study was published in the latest issue of Nature Materials.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001382345691