"/>

蜜臀av性久久久久|国产免费久久精品99|国产99久久久久久免费|成人精品一区二区三区在线|日韩精品一区二区av在线|国产亚洲欧美在线观看四区|色噜噜综合亚洲av中文无码|99久久久国产精品免费播放器

U.S. university engineers testing nanoparticles with aim at lowering antibiotic resistance

Source: Xinhua    2018-07-11 06:51:54

HOUSTON, July 10 (Xinhua) -- Two engineers with the University of Houston, Texas, the United States are working on nanoparticles to seek ways of lowering antibiotic resistance, according to the university's news release on Tuesday.

Antibiotic resistance is one of the world's most serious threats to public health, forcing the use of medications that are more toxic, more expensive and not always effective. There are several causes, including over-prescription of antibiotics in both humans and in livestock.

Debora Rodrigues, associate professor of civil and environmental engineering, and Stacey Louie, assistant professor of civil and environmental engineering have embarked on the project to determine whether the use of tiny amounts of antibiotics embedded in corn-based nanoparticles could allow the use of lower dosages and avoid wiping out the microbiome - the collection of both healthy and disease-causing bacteria found in the intestines - and the resulting genetic mutations that lead to antibiotic resistance.

They have developed a reactor to simulate pig intestines in order to study how antibiotics react in the pig microbiome.

"Pigs have a lot of similarities to humans," said Rodrigues, principal investigator, adding "we are working with livestock, but ultimately it could be helpful for humans."

Collaborators Cristina Sabliov and Carlos Astete at Louisiana State University will create corn-based nanoparticles loaded with antibiotics for the project.

Early data supports the researchers' hypothesis that the plant-based nanoparticles will be less toxic than many other forms of nanoparticle. They are designed to dissolve in the simulated pig intestine.

The goal is to determine if administering antibiotics in a different way will avoid the widespread damage to the microbiome associated with current practices.

"We'll study how the microbial community is changing and what genes related to antibiotic resistance are emerging," Rodrigues said.

Editor: Mu Xuequan
Related News
Xinhuanet

U.S. university engineers testing nanoparticles with aim at lowering antibiotic resistance

Source: Xinhua 2018-07-11 06:51:54

HOUSTON, July 10 (Xinhua) -- Two engineers with the University of Houston, Texas, the United States are working on nanoparticles to seek ways of lowering antibiotic resistance, according to the university's news release on Tuesday.

Antibiotic resistance is one of the world's most serious threats to public health, forcing the use of medications that are more toxic, more expensive and not always effective. There are several causes, including over-prescription of antibiotics in both humans and in livestock.

Debora Rodrigues, associate professor of civil and environmental engineering, and Stacey Louie, assistant professor of civil and environmental engineering have embarked on the project to determine whether the use of tiny amounts of antibiotics embedded in corn-based nanoparticles could allow the use of lower dosages and avoid wiping out the microbiome - the collection of both healthy and disease-causing bacteria found in the intestines - and the resulting genetic mutations that lead to antibiotic resistance.

They have developed a reactor to simulate pig intestines in order to study how antibiotics react in the pig microbiome.

"Pigs have a lot of similarities to humans," said Rodrigues, principal investigator, adding "we are working with livestock, but ultimately it could be helpful for humans."

Collaborators Cristina Sabliov and Carlos Astete at Louisiana State University will create corn-based nanoparticles loaded with antibiotics for the project.

Early data supports the researchers' hypothesis that the plant-based nanoparticles will be less toxic than many other forms of nanoparticle. They are designed to dissolve in the simulated pig intestine.

The goal is to determine if administering antibiotics in a different way will avoid the widespread damage to the microbiome associated with current practices.

"We'll study how the microbial community is changing and what genes related to antibiotic resistance are emerging," Rodrigues said.

[Editor: huaxia]
010020070750000000000000011105091373154791
辉县市| 高邑县| 南平市| 新兴县| 铜川市| 青浦区| 民乐县| 舒兰市| 南川市| 彰化市| 三门峡市| 日照市| 和静县| 闵行区| 临朐县| 安阳市| 台州市| 宁津县| 汝阳县| 南丰县| 垦利县| 介休市| 昭觉县| 石首市| 洪江市| 高安市| 阳高县| 广饶县| 丁青县| 泰宁县| 博罗县| 航空| 治县。| 黑水县| 达拉特旗| 泾川县| 女性| 蕲春县| 东宁县| 商城县| 新田县|